Dietary saturated fat modulates the association between STAT3 polymorphisms and abdominal obesity in adults

Typeset version

 

TY  - JOUR
  - Phillips, C. M; Goumidi, L; Bertrais, S; Field, M. R; Peloso, G. M; Shen, J; McManus, R; Hercberg, S; Lairon, D; Planells, R; Roche, H. M.
  - 2009
  - November
  - Dietary saturated fat modulates the association between STAT3 polymorphisms and abdominal obesity in adults
  - Validated
  - ()
  - 139
  - 1111
  - 2011
  - 72011
  - Signal transducer and activator of transcription 3 (STAT3) plays a key role in body weight regulation and glucose homeostasis, 2 important determinants of metabolic syndrome (MetS). Dietary fat is a key environmental factor that may interact with genotype to affect MetS risk. In this study, we investigated the relationship between STAT3 polymorphisms and MetS phenotypes and determined potential interactions with dietary fatty acids. STAT3 polymorphisms (rs8069645, rs744166, rs2306580, rs2293152, and rs10530050), biochemical measurements, and dietary fat composition were determined in the LIPGENE-SU.VI.MAX study of MetS cases and matched controls (n = 1754). STAT3 polymorphisms were not associated with MetS risk. However, minor G allele carriers for rs8069645, rs744166, and rs1053005 and major GG homozygotes for rs2293152 had increased risk of abdominal obesity compared with noncarriers [odds ratio (OR) = 2.22, P = 0.0005; OR = 2.08, P = 0.0017; OR = 2.00, P = 0.0033; and OR = 1.95, P = 0.028, respectively]. The number of risk alleles additively increased obesity risk (P = 0.0003). Dietary SFA intake exacerbated these effects; among all participants with the highest SFA intake (> or =15.5% of energy), individuals carrying >2 risk alleles had further increased risk of obesity (OR = 3.30; 95% CI = 1.50-7.28; P = 0.0079) compared with those carrying < or =1 risk allele. Interaction analysis confirmed this gene-nutrient interaction whereby increasing SFA intake was predictive of increased waist circumference (P = 0.038). In conclusion, STAT3 gene polymorphisms influenced the risk of abdominal obesity, which is modulated by dietary SFA intake, suggesting novel gene-nutrient interactions.Signal transducer and activator of transcription 3 (STAT3) plays a key role in body weight regulation and glucose homeostasis, 2 important determinants of metabolic syndrome (MetS). Dietary fat is a key environmental factor that may interact with genotype to affect MetS risk. In this study, we investigated the relationship between STAT3 polymorphisms and MetS phenotypes and determined potential interactions with dietary fatty acids. STAT3 polymorphisms (rs8069645, rs744166, rs2306580, rs2293152, and rs10530050), biochemical measurements, and dietary fat composition were determined in the LIPGENE-SU.VI.MAX study of MetS cases and matched controls (n = 1754). STAT3 polymorphisms were not associated with MetS risk. However, minor G allele carriers for rs8069645, rs744166, and rs1053005 and major GG homozygotes for rs2293152 had increased risk of abdominal obesity compared with noncarriers [odds ratio (OR) = 2.22, P = 0.0005; OR = 2.08, P = 0.0017; OR = 2.00, P = 0.0033; and OR = 1.95, P = 0.028, respectively]. The number of risk alleles additively increased obesity risk (P = 0.0003). Dietary SFA intake exacerbated these effects; among all participants with the highest SFA intake (> or =15.5% of energy), individuals carrying >2 risk alleles had further increased risk of obesity (OR = 3.30; 95% CI = 1.50-7.28; P = 0.0079) compared with those carrying < or =1 risk allele. Interaction analysis confirmed this gene-nutrient interaction whereby increasing SFA intake was predictive of increased waist circumference (P = 0.038). In conclusion, STAT3 gene polymorphisms influenced the risk of abdominal obesity, which is modulated by dietary SFA intake, suggesting novel gene-nutrient interactions.
  - 1541-6100 (Electronic)00
  - http://www.ncbi.nlm.nih.gov/pubmed/19776189http://www.ncbi.nlm.nih.gov/pubmed/19776189
DA  - 2009/11
ER  - 
@article{V72536717,
   = {Phillips, C. M and  Goumidi, L and  Bertrais, S and  Field, M. R and  Peloso, G. M and  Shen, J and  McManus, R and  Hercberg, S and  Lairon, D and  Planells, R and  Roche, H. M.},
   = {2009},
   = {November},
   = {Dietary saturated fat modulates the association between STAT3 polymorphisms and abdominal obesity in adults},
   = {Validated},
   = {()},
   = {139},
   = {1111},
  pages = {2011--72011},
   = {{Signal transducer and activator of transcription 3 (STAT3) plays a key role in body weight regulation and glucose homeostasis, 2 important determinants of metabolic syndrome (MetS). Dietary fat is a key environmental factor that may interact with genotype to affect MetS risk. In this study, we investigated the relationship between STAT3 polymorphisms and MetS phenotypes and determined potential interactions with dietary fatty acids. STAT3 polymorphisms (rs8069645, rs744166, rs2306580, rs2293152, and rs10530050), biochemical measurements, and dietary fat composition were determined in the LIPGENE-SU.VI.MAX study of MetS cases and matched controls (n = 1754). STAT3 polymorphisms were not associated with MetS risk. However, minor G allele carriers for rs8069645, rs744166, and rs1053005 and major GG homozygotes for rs2293152 had increased risk of abdominal obesity compared with noncarriers [odds ratio (OR) = 2.22, P = 0.0005; OR = 2.08, P = 0.0017; OR = 2.00, P = 0.0033; and OR = 1.95, P = 0.028, respectively]. The number of risk alleles additively increased obesity risk (P = 0.0003). Dietary SFA intake exacerbated these effects; among all participants with the highest SFA intake (> or =15.5% of energy), individuals carrying >2 risk alleles had further increased risk of obesity (OR = 3.30; 95% CI = 1.50-7.28; P = 0.0079) compared with those carrying < or =1 risk allele. Interaction analysis confirmed this gene-nutrient interaction whereby increasing SFA intake was predictive of increased waist circumference (P = 0.038). In conclusion, STAT3 gene polymorphisms influenced the risk of abdominal obesity, which is modulated by dietary SFA intake, suggesting novel gene-nutrient interactions.Signal transducer and activator of transcription 3 (STAT3) plays a key role in body weight regulation and glucose homeostasis, 2 important determinants of metabolic syndrome (MetS). Dietary fat is a key environmental factor that may interact with genotype to affect MetS risk. In this study, we investigated the relationship between STAT3 polymorphisms and MetS phenotypes and determined potential interactions with dietary fatty acids. STAT3 polymorphisms (rs8069645, rs744166, rs2306580, rs2293152, and rs10530050), biochemical measurements, and dietary fat composition were determined in the LIPGENE-SU.VI.MAX study of MetS cases and matched controls (n = 1754). STAT3 polymorphisms were not associated with MetS risk. However, minor G allele carriers for rs8069645, rs744166, and rs1053005 and major GG homozygotes for rs2293152 had increased risk of abdominal obesity compared with noncarriers [odds ratio (OR) = 2.22, P = 0.0005; OR = 2.08, P = 0.0017; OR = 2.00, P = 0.0033; and OR = 1.95, P = 0.028, respectively]. The number of risk alleles additively increased obesity risk (P = 0.0003). Dietary SFA intake exacerbated these effects; among all participants with the highest SFA intake (> or =15.5% of energy), individuals carrying >2 risk alleles had further increased risk of obesity (OR = 3.30; 95% CI = 1.50-7.28; P = 0.0079) compared with those carrying < or =1 risk allele. Interaction analysis confirmed this gene-nutrient interaction whereby increasing SFA intake was predictive of increased waist circumference (P = 0.038). In conclusion, STAT3 gene polymorphisms influenced the risk of abdominal obesity, which is modulated by dietary SFA intake, suggesting novel gene-nutrient interactions.}},
  issn = {1541-6100 (Electronic)00},
   = {http://www.ncbi.nlm.nih.gov/pubmed/19776189http://www.ncbi.nlm.nih.gov/pubmed/19776189},
  source = {IRIS}
}
AUTHORSPhillips, C. M; Goumidi, L; Bertrais, S; Field, M. R; Peloso, G. M; Shen, J; McManus, R; Hercberg, S; Lairon, D; Planells, R; Roche, H. M.
YEAR2009
MONTHNovember
JOURNAL_CODE
TITLEDietary saturated fat modulates the association between STAT3 polymorphisms and abdominal obesity in adults
STATUSValidated
TIMES_CITED()
SEARCH_KEYWORD
VOLUME139
ISSUE1111
START_PAGE2011
END_PAGE72011
ABSTRACTSignal transducer and activator of transcription 3 (STAT3) plays a key role in body weight regulation and glucose homeostasis, 2 important determinants of metabolic syndrome (MetS). Dietary fat is a key environmental factor that may interact with genotype to affect MetS risk. In this study, we investigated the relationship between STAT3 polymorphisms and MetS phenotypes and determined potential interactions with dietary fatty acids. STAT3 polymorphisms (rs8069645, rs744166, rs2306580, rs2293152, and rs10530050), biochemical measurements, and dietary fat composition were determined in the LIPGENE-SU.VI.MAX study of MetS cases and matched controls (n = 1754). STAT3 polymorphisms were not associated with MetS risk. However, minor G allele carriers for rs8069645, rs744166, and rs1053005 and major GG homozygotes for rs2293152 had increased risk of abdominal obesity compared with noncarriers [odds ratio (OR) = 2.22, P = 0.0005; OR = 2.08, P = 0.0017; OR = 2.00, P = 0.0033; and OR = 1.95, P = 0.028, respectively]. The number of risk alleles additively increased obesity risk (P = 0.0003). Dietary SFA intake exacerbated these effects; among all participants with the highest SFA intake (> or =15.5% of energy), individuals carrying >2 risk alleles had further increased risk of obesity (OR = 3.30; 95% CI = 1.50-7.28; P = 0.0079) compared with those carrying < or =1 risk allele. Interaction analysis confirmed this gene-nutrient interaction whereby increasing SFA intake was predictive of increased waist circumference (P = 0.038). In conclusion, STAT3 gene polymorphisms influenced the risk of abdominal obesity, which is modulated by dietary SFA intake, suggesting novel gene-nutrient interactions.Signal transducer and activator of transcription 3 (STAT3) plays a key role in body weight regulation and glucose homeostasis, 2 important determinants of metabolic syndrome (MetS). Dietary fat is a key environmental factor that may interact with genotype to affect MetS risk. In this study, we investigated the relationship between STAT3 polymorphisms and MetS phenotypes and determined potential interactions with dietary fatty acids. STAT3 polymorphisms (rs8069645, rs744166, rs2306580, rs2293152, and rs10530050), biochemical measurements, and dietary fat composition were determined in the LIPGENE-SU.VI.MAX study of MetS cases and matched controls (n = 1754). STAT3 polymorphisms were not associated with MetS risk. However, minor G allele carriers for rs8069645, rs744166, and rs1053005 and major GG homozygotes for rs2293152 had increased risk of abdominal obesity compared with noncarriers [odds ratio (OR) = 2.22, P = 0.0005; OR = 2.08, P = 0.0017; OR = 2.00, P = 0.0033; and OR = 1.95, P = 0.028, respectively]. The number of risk alleles additively increased obesity risk (P = 0.0003). Dietary SFA intake exacerbated these effects; among all participants with the highest SFA intake (> or =15.5% of energy), individuals carrying >2 risk alleles had further increased risk of obesity (OR = 3.30; 95% CI = 1.50-7.28; P = 0.0079) compared with those carrying < or =1 risk allele. Interaction analysis confirmed this gene-nutrient interaction whereby increasing SFA intake was predictive of increased waist circumference (P = 0.038). In conclusion, STAT3 gene polymorphisms influenced the risk of abdominal obesity, which is modulated by dietary SFA intake, suggesting novel gene-nutrient interactions.
PUBLISHER_LOCATION
ISBN_ISSN1541-6100 (Electronic)00
EDITION
URLhttp://www.ncbi.nlm.nih.gov/pubmed/19776189http://www.ncbi.nlm.nih.gov/pubmed/19776189
DOI_LINK
FUNDING_BODY
GRANT_DETAILS