Complement component 3 polymorphisms interact with polyunsaturated fatty acids to modulate risk of metabolic syndrome

Typeset version

 

TY  - JOUR
  - Phillips, C. M; Goumidi, L; Bertrais, S; Ferguson, J. F; Field, M. R; Kelly, E. D; Peloso, G. M; Cupples, L. A; Shen, J; Ordovas, J. M; McManus, R; Hercberg, S; Portugal, H; Lairon, D; Planells, R; Roche, H. M.
  - 2009
  - December
  - Complement component 3 polymorphisms interact with polyunsaturated fatty acids to modulate risk of metabolic syndrome
  - Validated
  - ()
  - 90
  - 66
  - 1665
  - 731665
  - BACKGROUND: Complement component 3 (C3) is a novel determinant of the metabolic syndrome (MetS). Gene-nutrient interactions with dietary fat may affect MetS risk. OBJECTIVES: The objectives were to determine the relation between C3 polymorphisms and MetS and whether interaction with plasma polyunsaturated fatty acids (PUFAs), a biomarker of dietary PUFA, modulate this relation. DESIGN: C3 polymorphisms (rs11569562, rs2250656, rs1047286, rs2230199, rs8107911, rs344548, rs344550, rs2241393, rs7257062, rs163913, and rs2230204), biochemical measurements, and plasma fatty acids were measured in the LIPGENE-SUpplementation en VItamines et Mineraux AntioXydants (SU.VI.MAX) study in MetS cases and matched controls (n = 1754). RESULTS: Two single nucleotide polymorphisms were associated with MetS. rs11569562 GG homozygotes had decreased MetS risk compared with minor A allele carriers [odds ratio (OR): 0.53; 95% CI: 0.35, 0.82; P = 0.009], which was augmented by high plasma PUFA status (OR: 0.32; 95% CI: 0.11, 0.93; P = 0.04). GG homozygotes had lower C3 concentrations than those in AA homozygotes (P = 0.03) and decreased risk of hypertriglyceridemia compared with A allele carriers (OR: 0.54; 95% CI: 0.34, 0.92; P = 0.02), which was further ameliorated by an increase in long-chain n-3 (omega-3) PUFAs (OR: 0.46; 95% CI: 0.22, 0.97; P = 0.04) or a decrease in n-6 PUFAs (OR: 0.32; CI: 0.16, 0.62; P = 0.002). rs2250656 AA homozygotes had increased MetS risk relative to minor G allele carriers (OR: 1.78; CI: 1.19, 2.70; P = 0.02), which was exacerbated by low n-6 PUFA status (OR: 2.20; CI: 1.09, 4.55; P = 0.03). CONCLUSION: Plasma PUFAs may modulate the susceptibility to MetS that is conferred by C3 polymorphisms, which suggests novel gene-nutrient interactions. This trial was registered at clinicaltrials.gov as NCT00272428.BACKGROUND: Complement component 3 (C3) is a novel determinant of the metabolic syndrome (MetS). Gene-nutrient interactions with dietary fat may affect MetS risk. OBJECTIVES: The objectives were to determine the relation between C3 polymorphisms and MetS and whether interaction with plasma polyunsaturated fatty acids (PUFAs), a biomarker of dietary PUFA, modulate this relation. DESIGN: C3 polymorphisms (rs11569562, rs2250656, rs1047286, rs2230199, rs8107911, rs344548, rs344550, rs2241393, rs7257062, rs163913, and rs2230204), biochemical measurements, and plasma fatty acids were measured in the LIPGENE-SUpplementation en VItamines et Mineraux AntioXydants (SU.VI.MAX) study in MetS cases and matched controls (n = 1754). RESULTS: Two single nucleotide polymorphisms were associated with MetS. rs11569562 GG homozygotes had decreased MetS risk compared with minor A allele carriers [odds ratio (OR): 0.53; 95% CI: 0.35, 0.82; P = 0.009], which was augmented by high plasma PUFA status (OR: 0.32; 95% CI: 0.11, 0.93; P = 0.04). GG homozygotes had lower C3 concentrations than those in AA homozygotes (P = 0.03) and decreased risk of hypertriglyceridemia compared with A allele carriers (OR: 0.54; 95% CI: 0.34, 0.92; P = 0.02), which was further ameliorated by an increase in long-chain n-3 (omega-3) PUFAs (OR: 0.46; 95% CI: 0.22, 0.97; P = 0.04) or a decrease in n-6 PUFAs (OR: 0.32; CI: 0.16, 0.62; P = 0.002). rs2250656 AA homozygotes had increased MetS risk relative to minor G allele carriers (OR: 1.78; CI: 1.19, 2.70; P = 0.02), which was exacerbated by low n-6 PUFA status (OR: 2.20; CI: 1.09, 4.55; P = 0.03). CONCLUSION: Plasma PUFAs may modulate the susceptibility to MetS that is conferred by C3 polymorphisms, which suggests novel gene-nutrient interactions. This trial was registered at clinicaltrials.gov as NCT00272428.
  - 1938-3207 (Electronic)00
  - http://www.ncbi.nlm.nih.gov/pubmed/19828715http://www.ncbi.nlm.nih.gov/pubmed/19828715
DA  - 2009/12
ER  - 
@article{V72536719,
   = {Phillips, C. M and  Goumidi, L and  Bertrais, S and  Ferguson, J. F and  Field, M. R and  Kelly, E. D and  Peloso, G. M and  Cupples, L. A and  Shen, J and  Ordovas, J. M and  McManus, R and  Hercberg, S and  Portugal, H and  Lairon, D and  Planells, R and  Roche, H. M.},
   = {2009},
   = {December},
   = {Complement component 3 polymorphisms interact with polyunsaturated fatty acids to modulate risk of metabolic syndrome},
   = {Validated},
   = {()},
   = {90},
   = {66},
  pages = {1665--731665},
   = {{BACKGROUND: Complement component 3 (C3) is a novel determinant of the metabolic syndrome (MetS). Gene-nutrient interactions with dietary fat may affect MetS risk. OBJECTIVES: The objectives were to determine the relation between C3 polymorphisms and MetS and whether interaction with plasma polyunsaturated fatty acids (PUFAs), a biomarker of dietary PUFA, modulate this relation. DESIGN: C3 polymorphisms (rs11569562, rs2250656, rs1047286, rs2230199, rs8107911, rs344548, rs344550, rs2241393, rs7257062, rs163913, and rs2230204), biochemical measurements, and plasma fatty acids were measured in the LIPGENE-SUpplementation en VItamines et Mineraux AntioXydants (SU.VI.MAX) study in MetS cases and matched controls (n = 1754). RESULTS: Two single nucleotide polymorphisms were associated with MetS. rs11569562 GG homozygotes had decreased MetS risk compared with minor A allele carriers [odds ratio (OR): 0.53; 95% CI: 0.35, 0.82; P = 0.009], which was augmented by high plasma PUFA status (OR: 0.32; 95% CI: 0.11, 0.93; P = 0.04). GG homozygotes had lower C3 concentrations than those in AA homozygotes (P = 0.03) and decreased risk of hypertriglyceridemia compared with A allele carriers (OR: 0.54; 95% CI: 0.34, 0.92; P = 0.02), which was further ameliorated by an increase in long-chain n-3 (omega-3) PUFAs (OR: 0.46; 95% CI: 0.22, 0.97; P = 0.04) or a decrease in n-6 PUFAs (OR: 0.32; CI: 0.16, 0.62; P = 0.002). rs2250656 AA homozygotes had increased MetS risk relative to minor G allele carriers (OR: 1.78; CI: 1.19, 2.70; P = 0.02), which was exacerbated by low n-6 PUFA status (OR: 2.20; CI: 1.09, 4.55; P = 0.03). CONCLUSION: Plasma PUFAs may modulate the susceptibility to MetS that is conferred by C3 polymorphisms, which suggests novel gene-nutrient interactions. This trial was registered at clinicaltrials.gov as NCT00272428.BACKGROUND: Complement component 3 (C3) is a novel determinant of the metabolic syndrome (MetS). Gene-nutrient interactions with dietary fat may affect MetS risk. OBJECTIVES: The objectives were to determine the relation between C3 polymorphisms and MetS and whether interaction with plasma polyunsaturated fatty acids (PUFAs), a biomarker of dietary PUFA, modulate this relation. DESIGN: C3 polymorphisms (rs11569562, rs2250656, rs1047286, rs2230199, rs8107911, rs344548, rs344550, rs2241393, rs7257062, rs163913, and rs2230204), biochemical measurements, and plasma fatty acids were measured in the LIPGENE-SUpplementation en VItamines et Mineraux AntioXydants (SU.VI.MAX) study in MetS cases and matched controls (n = 1754). RESULTS: Two single nucleotide polymorphisms were associated with MetS. rs11569562 GG homozygotes had decreased MetS risk compared with minor A allele carriers [odds ratio (OR): 0.53; 95% CI: 0.35, 0.82; P = 0.009], which was augmented by high plasma PUFA status (OR: 0.32; 95% CI: 0.11, 0.93; P = 0.04). GG homozygotes had lower C3 concentrations than those in AA homozygotes (P = 0.03) and decreased risk of hypertriglyceridemia compared with A allele carriers (OR: 0.54; 95% CI: 0.34, 0.92; P = 0.02), which was further ameliorated by an increase in long-chain n-3 (omega-3) PUFAs (OR: 0.46; 95% CI: 0.22, 0.97; P = 0.04) or a decrease in n-6 PUFAs (OR: 0.32; CI: 0.16, 0.62; P = 0.002). rs2250656 AA homozygotes had increased MetS risk relative to minor G allele carriers (OR: 1.78; CI: 1.19, 2.70; P = 0.02), which was exacerbated by low n-6 PUFA status (OR: 2.20; CI: 1.09, 4.55; P = 0.03). CONCLUSION: Plasma PUFAs may modulate the susceptibility to MetS that is conferred by C3 polymorphisms, which suggests novel gene-nutrient interactions. This trial was registered at clinicaltrials.gov as NCT00272428.}},
  issn = {1938-3207 (Electronic)00},
   = {http://www.ncbi.nlm.nih.gov/pubmed/19828715http://www.ncbi.nlm.nih.gov/pubmed/19828715},
  source = {IRIS}
}
AUTHORSPhillips, C. M; Goumidi, L; Bertrais, S; Ferguson, J. F; Field, M. R; Kelly, E. D; Peloso, G. M; Cupples, L. A; Shen, J; Ordovas, J. M; McManus, R; Hercberg, S; Portugal, H; Lairon, D; Planells, R; Roche, H. M.
YEAR2009
MONTHDecember
JOURNAL_CODE
TITLEComplement component 3 polymorphisms interact with polyunsaturated fatty acids to modulate risk of metabolic syndrome
STATUSValidated
TIMES_CITED()
SEARCH_KEYWORD
VOLUME90
ISSUE66
START_PAGE1665
END_PAGE731665
ABSTRACTBACKGROUND: Complement component 3 (C3) is a novel determinant of the metabolic syndrome (MetS). Gene-nutrient interactions with dietary fat may affect MetS risk. OBJECTIVES: The objectives were to determine the relation between C3 polymorphisms and MetS and whether interaction with plasma polyunsaturated fatty acids (PUFAs), a biomarker of dietary PUFA, modulate this relation. DESIGN: C3 polymorphisms (rs11569562, rs2250656, rs1047286, rs2230199, rs8107911, rs344548, rs344550, rs2241393, rs7257062, rs163913, and rs2230204), biochemical measurements, and plasma fatty acids were measured in the LIPGENE-SUpplementation en VItamines et Mineraux AntioXydants (SU.VI.MAX) study in MetS cases and matched controls (n = 1754). RESULTS: Two single nucleotide polymorphisms were associated with MetS. rs11569562 GG homozygotes had decreased MetS risk compared with minor A allele carriers [odds ratio (OR): 0.53; 95% CI: 0.35, 0.82; P = 0.009], which was augmented by high plasma PUFA status (OR: 0.32; 95% CI: 0.11, 0.93; P = 0.04). GG homozygotes had lower C3 concentrations than those in AA homozygotes (P = 0.03) and decreased risk of hypertriglyceridemia compared with A allele carriers (OR: 0.54; 95% CI: 0.34, 0.92; P = 0.02), which was further ameliorated by an increase in long-chain n-3 (omega-3) PUFAs (OR: 0.46; 95% CI: 0.22, 0.97; P = 0.04) or a decrease in n-6 PUFAs (OR: 0.32; CI: 0.16, 0.62; P = 0.002). rs2250656 AA homozygotes had increased MetS risk relative to minor G allele carriers (OR: 1.78; CI: 1.19, 2.70; P = 0.02), which was exacerbated by low n-6 PUFA status (OR: 2.20; CI: 1.09, 4.55; P = 0.03). CONCLUSION: Plasma PUFAs may modulate the susceptibility to MetS that is conferred by C3 polymorphisms, which suggests novel gene-nutrient interactions. This trial was registered at clinicaltrials.gov as NCT00272428.BACKGROUND: Complement component 3 (C3) is a novel determinant of the metabolic syndrome (MetS). Gene-nutrient interactions with dietary fat may affect MetS risk. OBJECTIVES: The objectives were to determine the relation between C3 polymorphisms and MetS and whether interaction with plasma polyunsaturated fatty acids (PUFAs), a biomarker of dietary PUFA, modulate this relation. DESIGN: C3 polymorphisms (rs11569562, rs2250656, rs1047286, rs2230199, rs8107911, rs344548, rs344550, rs2241393, rs7257062, rs163913, and rs2230204), biochemical measurements, and plasma fatty acids were measured in the LIPGENE-SUpplementation en VItamines et Mineraux AntioXydants (SU.VI.MAX) study in MetS cases and matched controls (n = 1754). RESULTS: Two single nucleotide polymorphisms were associated with MetS. rs11569562 GG homozygotes had decreased MetS risk compared with minor A allele carriers [odds ratio (OR): 0.53; 95% CI: 0.35, 0.82; P = 0.009], which was augmented by high plasma PUFA status (OR: 0.32; 95% CI: 0.11, 0.93; P = 0.04). GG homozygotes had lower C3 concentrations than those in AA homozygotes (P = 0.03) and decreased risk of hypertriglyceridemia compared with A allele carriers (OR: 0.54; 95% CI: 0.34, 0.92; P = 0.02), which was further ameliorated by an increase in long-chain n-3 (omega-3) PUFAs (OR: 0.46; 95% CI: 0.22, 0.97; P = 0.04) or a decrease in n-6 PUFAs (OR: 0.32; CI: 0.16, 0.62; P = 0.002). rs2250656 AA homozygotes had increased MetS risk relative to minor G allele carriers (OR: 1.78; CI: 1.19, 2.70; P = 0.02), which was exacerbated by low n-6 PUFA status (OR: 2.20; CI: 1.09, 4.55; P = 0.03). CONCLUSION: Plasma PUFAs may modulate the susceptibility to MetS that is conferred by C3 polymorphisms, which suggests novel gene-nutrient interactions. This trial was registered at clinicaltrials.gov as NCT00272428.
PUBLISHER_LOCATION
ISBN_ISSN1938-3207 (Electronic)00
EDITION
URLhttp://www.ncbi.nlm.nih.gov/pubmed/19828715http://www.ncbi.nlm.nih.gov/pubmed/19828715
DOI_LINK
FUNDING_BODY
GRANT_DETAILS