Differential regulation of Toll-like receptor signalling in spleen and Peyer's patch dendritic cells

Typeset version

 

TY  - JOUR
  - Davies, Julie M. and MacSharry, John and Shanahan, Fergus
  - 2010
  - Differential regulation of Toll-like receptor signalling in spleen and Peyer's patch dendritic cells
  - Validated
  - ()
  - 131
  - 3
  - 438
  - 448
  - P>Toll-like receptor (TLR) signalling shapes dendritic cell (DC) responses by inducing co-stimulatory molecule up-regulation and cytokine secretion while TLR regulatory proteins inhibit this process. We aimed to determine if gene expression of TLRs and TLR regulatory proteins underpins the functionally different lipopolysaccharide (LPS) responses of DCs from murine Peyer's patches (PP) and spleen and of murine bacteria-conditioned bone-marrow-derived cells. Isolated spleen and PP DCs were analysed for basal expression of TLRs by flow cytometry and real time quantitative reverse transcription polymerase chain reaction (qRT-PCR). The DCs were stimulated with LPS to determine cytokine secretion by enzyme-linked immunosorbent assay and expression of TLR regulatory proteins by qRT-PCR. In vitro results were confirmed following in vivo intraperitoneal LPS injection. In addition, changes in gene expression of TLR regulatory proteins were assessed in bacteria-conditioned bone-marrow-derived cells. Results indicated that surface expression of TLR2 and TLR4 on PP DCs was decreased compared with spleen DCs. The PP DCs secreted a limited profile of cytokines compared with spleen DCs following LPS stimulation. In vivo LPS exposure up-regulated sigirr, tollip and tmed1 messenger RNA in PP DCs, but not spleen DCs. Similar gene expression changes were observed in bacteria-conditioned bone-marrow-derived cells. Therefore, functionally different LPS responses in PP and spleen DCs reflect their characteristic expression of TLRs and TLR regulatory proteins. Differential regulation of TLR signalling was also evident in bacteria-conditioned bone-marrow-derived cells indicating that bacterial signalling may be a mechanism for inducing altered gene regulation in PP DCs.
DA  - 2010/NaN
ER  - 
@article{V122827692,
   = {Davies, Julie M. and MacSharry, John and Shanahan, Fergus},
   = {2010},
   = {Differential regulation of Toll-like receptor signalling in spleen and Peyer's patch dendritic cells},
   = {Validated},
   = {()},
   = {131},
   = {3},
  pages = {438--448},
   = {{P>Toll-like receptor (TLR) signalling shapes dendritic cell (DC) responses by inducing co-stimulatory molecule up-regulation and cytokine secretion while TLR regulatory proteins inhibit this process. We aimed to determine if gene expression of TLRs and TLR regulatory proteins underpins the functionally different lipopolysaccharide (LPS) responses of DCs from murine Peyer's patches (PP) and spleen and of murine bacteria-conditioned bone-marrow-derived cells. Isolated spleen and PP DCs were analysed for basal expression of TLRs by flow cytometry and real time quantitative reverse transcription polymerase chain reaction (qRT-PCR). The DCs were stimulated with LPS to determine cytokine secretion by enzyme-linked immunosorbent assay and expression of TLR regulatory proteins by qRT-PCR. In vitro results were confirmed following in vivo intraperitoneal LPS injection. In addition, changes in gene expression of TLR regulatory proteins were assessed in bacteria-conditioned bone-marrow-derived cells. Results indicated that surface expression of TLR2 and TLR4 on PP DCs was decreased compared with spleen DCs. The PP DCs secreted a limited profile of cytokines compared with spleen DCs following LPS stimulation. In vivo LPS exposure up-regulated sigirr, tollip and tmed1 messenger RNA in PP DCs, but not spleen DCs. Similar gene expression changes were observed in bacteria-conditioned bone-marrow-derived cells. Therefore, functionally different LPS responses in PP and spleen DCs reflect their characteristic expression of TLRs and TLR regulatory proteins. Differential regulation of TLR signalling was also evident in bacteria-conditioned bone-marrow-derived cells indicating that bacterial signalling may be a mechanism for inducing altered gene regulation in PP DCs.}},
  source = {IRIS}
}
AUTHORSDavies, Julie M. and MacSharry, John and Shanahan, Fergus
YEAR2010
MONTH
JOURNAL_CODE
TITLEDifferential regulation of Toll-like receptor signalling in spleen and Peyer's patch dendritic cells
STATUSValidated
TIMES_CITED()
SEARCH_KEYWORD
VOLUME131
ISSUE3
START_PAGE438
END_PAGE448
ABSTRACTP>Toll-like receptor (TLR) signalling shapes dendritic cell (DC) responses by inducing co-stimulatory molecule up-regulation and cytokine secretion while TLR regulatory proteins inhibit this process. We aimed to determine if gene expression of TLRs and TLR regulatory proteins underpins the functionally different lipopolysaccharide (LPS) responses of DCs from murine Peyer's patches (PP) and spleen and of murine bacteria-conditioned bone-marrow-derived cells. Isolated spleen and PP DCs were analysed for basal expression of TLRs by flow cytometry and real time quantitative reverse transcription polymerase chain reaction (qRT-PCR). The DCs were stimulated with LPS to determine cytokine secretion by enzyme-linked immunosorbent assay and expression of TLR regulatory proteins by qRT-PCR. In vitro results were confirmed following in vivo intraperitoneal LPS injection. In addition, changes in gene expression of TLR regulatory proteins were assessed in bacteria-conditioned bone-marrow-derived cells. Results indicated that surface expression of TLR2 and TLR4 on PP DCs was decreased compared with spleen DCs. The PP DCs secreted a limited profile of cytokines compared with spleen DCs following LPS stimulation. In vivo LPS exposure up-regulated sigirr, tollip and tmed1 messenger RNA in PP DCs, but not spleen DCs. Similar gene expression changes were observed in bacteria-conditioned bone-marrow-derived cells. Therefore, functionally different LPS responses in PP and spleen DCs reflect their characteristic expression of TLRs and TLR regulatory proteins. Differential regulation of TLR signalling was also evident in bacteria-conditioned bone-marrow-derived cells indicating that bacterial signalling may be a mechanism for inducing altered gene regulation in PP DCs.
PUBLISHER_LOCATION
ISBN_ISSN
EDITION
URL
DOI_LINK
FUNDING_BODY
GRANT_DETAILS