Role for BRG1 in cell cycle control and tumor suppression

Typeset version

 

TY  - JOUR
  - Hendricks, K. B.,Shanahan, F.,Lees, E.
  - 2004
  - January
  - Role for BRG1 in cell cycle control and tumor suppression
  - Validated
  - ()
  - 24
  - 11
  - 362
  - 376362
  - Human BRG1, a subunit of the Swi/Snf chromatin remodeling apparatus, has been implicated in regulation of cellular proliferation and is a candidate tumor suppressor. Reintroduction of BRG1 into a breast tumor cell line, ALAB, carrying a defined mutation in the BRG1 gene, induced growth arrest. Gene expression data revealed that the arrest may in part be accounted for by down-regulation of select E2F target genes such as cyclin E, but more dramatically, by up-regulation of mRNAs for the cyclin-dependent kinase inhibitors p21 and p15. Protein levels of both p15 and p21 were induced, and p21 protein was recruited to a complex with cyclin-dependent kinase, CDK2, to inhibit its activity. BRG1 can associate with the p21 promoter in a p53-independent manner, suggesting that the induction of p21 by BRG1 may be direct. Further, using microarray and real-time PCR analysis we identified several novel BRG1-regulated genes. Our work provides further evidence for a role for BRG1 in the regulation of several genes involved in key steps in tumorigenesis and has revealed a potential mechanism for BRG1-induced growth arrest.Human BRG1, a subunit of the Swi/Snf chromatin remodeling apparatus, has been implicated in regulation of cellular proliferation and is a candidate tumor suppressor. Reintroduction of BRG1 into a breast tumor cell line, ALAB, carrying a defined mutation in the BRG1 gene, induced growth arrest. Gene expression data revealed that the arrest may in part be accounted for by down-regulation of select E2F target genes such as cyclin E, but more dramatically, by up-regulation of mRNAs for the cyclin-dependent kinase inhibitors p21 and p15. Protein levels of both p15 and p21 were induced, and p21 protein was recruited to a complex with cyclin-dependent kinase, CDK2, to inhibit its activity. BRG1 can associate with the p21 promoter in a p53-independent manner, suggesting that the induction of p21 by BRG1 may be direct. Further, using microarray and real-time PCR analysis we identified several novel BRG1-regulated genes. Our work provides further evidence for a role for BRG1 in the regulation of several genes involved in key steps in tumorigenesis and has revealed a potential mechanism for BRG1-induced growth arrest.
  - 0270-73060270-7306
  - ://WOS:000187531200032://WOS:000187531200032
DA  - 2004/01
ER  - 
@article{V235379468,
   = {Hendricks,  K. B. and Shanahan,  F. and Lees,  E. },
   = {2004},
   = {January},
   = {Role for BRG1 in cell cycle control and tumor suppression},
   = {Validated},
   = {()},
   = {24},
   = {11},
  pages = {362--376362},
   = {{Human BRG1, a subunit of the Swi/Snf chromatin remodeling apparatus, has been implicated in regulation of cellular proliferation and is a candidate tumor suppressor. Reintroduction of BRG1 into a breast tumor cell line, ALAB, carrying a defined mutation in the BRG1 gene, induced growth arrest. Gene expression data revealed that the arrest may in part be accounted for by down-regulation of select E2F target genes such as cyclin E, but more dramatically, by up-regulation of mRNAs for the cyclin-dependent kinase inhibitors p21 and p15. Protein levels of both p15 and p21 were induced, and p21 protein was recruited to a complex with cyclin-dependent kinase, CDK2, to inhibit its activity. BRG1 can associate with the p21 promoter in a p53-independent manner, suggesting that the induction of p21 by BRG1 may be direct. Further, using microarray and real-time PCR analysis we identified several novel BRG1-regulated genes. Our work provides further evidence for a role for BRG1 in the regulation of several genes involved in key steps in tumorigenesis and has revealed a potential mechanism for BRG1-induced growth arrest.Human BRG1, a subunit of the Swi/Snf chromatin remodeling apparatus, has been implicated in regulation of cellular proliferation and is a candidate tumor suppressor. Reintroduction of BRG1 into a breast tumor cell line, ALAB, carrying a defined mutation in the BRG1 gene, induced growth arrest. Gene expression data revealed that the arrest may in part be accounted for by down-regulation of select E2F target genes such as cyclin E, but more dramatically, by up-regulation of mRNAs for the cyclin-dependent kinase inhibitors p21 and p15. Protein levels of both p15 and p21 were induced, and p21 protein was recruited to a complex with cyclin-dependent kinase, CDK2, to inhibit its activity. BRG1 can associate with the p21 promoter in a p53-independent manner, suggesting that the induction of p21 by BRG1 may be direct. Further, using microarray and real-time PCR analysis we identified several novel BRG1-regulated genes. Our work provides further evidence for a role for BRG1 in the regulation of several genes involved in key steps in tumorigenesis and has revealed a potential mechanism for BRG1-induced growth arrest.}},
  issn = {0270-73060270-7306},
   = {://WOS:000187531200032://WOS:000187531200032},
  source = {IRIS}
}
AUTHORSHendricks, K. B.,Shanahan, F.,Lees, E.
YEAR2004
MONTHJanuary
JOURNAL_CODE
TITLERole for BRG1 in cell cycle control and tumor suppression
STATUSValidated
TIMES_CITED()
SEARCH_KEYWORD
VOLUME24
ISSUE11
START_PAGE362
END_PAGE376362
ABSTRACTHuman BRG1, a subunit of the Swi/Snf chromatin remodeling apparatus, has been implicated in regulation of cellular proliferation and is a candidate tumor suppressor. Reintroduction of BRG1 into a breast tumor cell line, ALAB, carrying a defined mutation in the BRG1 gene, induced growth arrest. Gene expression data revealed that the arrest may in part be accounted for by down-regulation of select E2F target genes such as cyclin E, but more dramatically, by up-regulation of mRNAs for the cyclin-dependent kinase inhibitors p21 and p15. Protein levels of both p15 and p21 were induced, and p21 protein was recruited to a complex with cyclin-dependent kinase, CDK2, to inhibit its activity. BRG1 can associate with the p21 promoter in a p53-independent manner, suggesting that the induction of p21 by BRG1 may be direct. Further, using microarray and real-time PCR analysis we identified several novel BRG1-regulated genes. Our work provides further evidence for a role for BRG1 in the regulation of several genes involved in key steps in tumorigenesis and has revealed a potential mechanism for BRG1-induced growth arrest.Human BRG1, a subunit of the Swi/Snf chromatin remodeling apparatus, has been implicated in regulation of cellular proliferation and is a candidate tumor suppressor. Reintroduction of BRG1 into a breast tumor cell line, ALAB, carrying a defined mutation in the BRG1 gene, induced growth arrest. Gene expression data revealed that the arrest may in part be accounted for by down-regulation of select E2F target genes such as cyclin E, but more dramatically, by up-regulation of mRNAs for the cyclin-dependent kinase inhibitors p21 and p15. Protein levels of both p15 and p21 were induced, and p21 protein was recruited to a complex with cyclin-dependent kinase, CDK2, to inhibit its activity. BRG1 can associate with the p21 promoter in a p53-independent manner, suggesting that the induction of p21 by BRG1 may be direct. Further, using microarray and real-time PCR analysis we identified several novel BRG1-regulated genes. Our work provides further evidence for a role for BRG1 in the regulation of several genes involved in key steps in tumorigenesis and has revealed a potential mechanism for BRG1-induced growth arrest.
PUBLISHER_LOCATION
ISBN_ISSN0270-73060270-7306
EDITION
URL://WOS:000187531200032://WOS:000187531200032
DOI_LINK
FUNDING_BODY
GRANT_DETAILS