Constitutive ERK1/2 activation in esophagogastric rib bone marrow micrometastatic cells is MEK-independent

Typeset version

 

TY  - JOUR
  - Barry, O. P.,Mullan, B.,Sheehan, D.,Kazanietz, M. G.,Shanahan, F.,Collins, J. K.,O'Sullivan, G. C.
  - 2001
  - May
  - Journal of Biological Chemistry
  - Constitutive ERK1/2 activation in esophagogastric rib bone marrow micrometastatic cells is MEK-independent
  - Validated
  - ()
  - 276
  - 181
  - 15537
  - 15546
  - In this study, we examined the mitogen-activated protein kinase (MAPK) cascade in micrometastatic cell lines generated from rib bone marrow (RBM) of patients undergoing resection of esophagogastric malignancies, The molecular mechanism(s) involved in esophagogastric MAPK activation have not previously been investigated. Constitutive activation of both ERK1 and -2 isoforms was evident in each of the five RBM cell lines. Elk-1, a transcription factor activated by the ERK1/2 pathway was also found to be constitutively activated. Cell lines generated from metastases of involved lymph nodes (OC2) and ascites (OC1) of patients with esophageal cancer do not display, however, hyperphosphorylation of ERK1/2, Constitutive RBM ERK1/2 activation is protein kinase C and phosphatidylinositol 3-kinase dependent. Surprisingly, constitutive ERK1/2 activation is MEK-independent. Pharmacological inhibition of MEK with two specific inhibitors, PD 98059 and U0126, were both ineffective in blocking ERK activation. Similarly, the use of a dominant negative MEK mutant was without effect. Interestingly, experiments overexpressing two different dominant negative Pak1 mutants significantly reduced RBM ERK1/2 activation, albeit not to the same extent for all cell lines. We also examined the role of three different phosphatases, PAC1, MKP-1, and -2, While RBM ERK1/2 activation was found to be PAC1- and MKP-2-independent, surprisingly, MKP-1 was down-regulated in all five RBM cell lines. In conclusion, we provide evidence for the first time for a MEK-independent constitutive ERK1/2 activation pathway in esophagogastric RBM cell lines. These findings have important implications for drug treatment strategies which currently target MEK in other forms of cancer.In this study, we examined the mitogen-activated protein kinase (MAPK) cascade in micrometastatic cell lines generated from rib bone marrow (RBM) of patients undergoing resection of esophagogastric malignancies, The molecular mechanism(s) involved in esophagogastric MAPK activation have not previously been investigated. Constitutive activation of both ERK1 and -2 isoforms was evident in each of the five RBM cell lines. Elk-1, a transcription factor activated by the ERK1/2 pathway was also found to be constitutively activated. Cell lines generated from metastases of involved lymph nodes (OC2) and ascites (OC1) of patients with esophageal cancer do not display, however, hyperphosphorylation of ERK1/2, Constitutive RBM ERK1/2 activation is protein kinase C and phosphatidylinositol 3-kinase dependent. Surprisingly, constitutive ERK1/2 activation is MEK-independent. Pharmacological inhibition of MEK with two specific inhibitors, PD 98059 and U0126, were both ineffective in blocking ERK activation. Similarly, the use of a dominant negative MEK mutant was without effect. Interestingly, experiments overexpressing two different dominant negative Pak1 mutants significantly reduced RBM ERK1/2 activation, albeit not to the same extent for all cell lines. We also examined the role of three different phosphatases, PAC1, MKP-1, and -2, While RBM ERK1/2 activation was found to be PAC1- and MKP-2-independent, surprisingly, MKP-1 was down-regulated in all five RBM cell lines. In conclusion, we provide evidence for the first time for a MEK-independent constitutive ERK1/2 activation pathway in esophagogastric RBM cell lines. These findings have important implications for drug treatment strategies which currently target MEK in other forms of cancer.
  - 0021-92580021-9258
  - ://WOS:000168528800133://WOS:000168528800133
DA  - 2001/05
ER  - 
@article{V235379628,
   = {Barry,  O. P. and Mullan,  B. and Sheehan,  D. and Kazanietz,  M. G. and Shanahan,  F. and Collins,  J. K. and O'Sullivan,  G. C. },
   = {2001},
   = {May},
   = {Journal of Biological Chemistry},
   = {Constitutive ERK1/2 activation in esophagogastric rib bone marrow micrometastatic cells is MEK-independent},
   = {Validated},
   = {()},
   = {276},
   = {181},
  pages = {15537--15546},
   = {{In this study, we examined the mitogen-activated protein kinase (MAPK) cascade in micrometastatic cell lines generated from rib bone marrow (RBM) of patients undergoing resection of esophagogastric malignancies, The molecular mechanism(s) involved in esophagogastric MAPK activation have not previously been investigated. Constitutive activation of both ERK1 and -2 isoforms was evident in each of the five RBM cell lines. Elk-1, a transcription factor activated by the ERK1/2 pathway was also found to be constitutively activated. Cell lines generated from metastases of involved lymph nodes (OC2) and ascites (OC1) of patients with esophageal cancer do not display, however, hyperphosphorylation of ERK1/2, Constitutive RBM ERK1/2 activation is protein kinase C and phosphatidylinositol 3-kinase dependent. Surprisingly, constitutive ERK1/2 activation is MEK-independent. Pharmacological inhibition of MEK with two specific inhibitors, PD 98059 and U0126, were both ineffective in blocking ERK activation. Similarly, the use of a dominant negative MEK mutant was without effect. Interestingly, experiments overexpressing two different dominant negative Pak1 mutants significantly reduced RBM ERK1/2 activation, albeit not to the same extent for all cell lines. We also examined the role of three different phosphatases, PAC1, MKP-1, and -2, While RBM ERK1/2 activation was found to be PAC1- and MKP-2-independent, surprisingly, MKP-1 was down-regulated in all five RBM cell lines. In conclusion, we provide evidence for the first time for a MEK-independent constitutive ERK1/2 activation pathway in esophagogastric RBM cell lines. These findings have important implications for drug treatment strategies which currently target MEK in other forms of cancer.In this study, we examined the mitogen-activated protein kinase (MAPK) cascade in micrometastatic cell lines generated from rib bone marrow (RBM) of patients undergoing resection of esophagogastric malignancies, The molecular mechanism(s) involved in esophagogastric MAPK activation have not previously been investigated. Constitutive activation of both ERK1 and -2 isoforms was evident in each of the five RBM cell lines. Elk-1, a transcription factor activated by the ERK1/2 pathway was also found to be constitutively activated. Cell lines generated from metastases of involved lymph nodes (OC2) and ascites (OC1) of patients with esophageal cancer do not display, however, hyperphosphorylation of ERK1/2, Constitutive RBM ERK1/2 activation is protein kinase C and phosphatidylinositol 3-kinase dependent. Surprisingly, constitutive ERK1/2 activation is MEK-independent. Pharmacological inhibition of MEK with two specific inhibitors, PD 98059 and U0126, were both ineffective in blocking ERK activation. Similarly, the use of a dominant negative MEK mutant was without effect. Interestingly, experiments overexpressing two different dominant negative Pak1 mutants significantly reduced RBM ERK1/2 activation, albeit not to the same extent for all cell lines. We also examined the role of three different phosphatases, PAC1, MKP-1, and -2, While RBM ERK1/2 activation was found to be PAC1- and MKP-2-independent, surprisingly, MKP-1 was down-regulated in all five RBM cell lines. In conclusion, we provide evidence for the first time for a MEK-independent constitutive ERK1/2 activation pathway in esophagogastric RBM cell lines. These findings have important implications for drug treatment strategies which currently target MEK in other forms of cancer.}},
  issn = {0021-92580021-9258},
   = {://WOS:000168528800133://WOS:000168528800133},
  source = {IRIS}
}
AUTHORSBarry, O. P.,Mullan, B.,Sheehan, D.,Kazanietz, M. G.,Shanahan, F.,Collins, J. K.,O'Sullivan, G. C.
YEAR2001
MONTHMay
JOURNAL_CODEJournal of Biological Chemistry
TITLEConstitutive ERK1/2 activation in esophagogastric rib bone marrow micrometastatic cells is MEK-independent
STATUSValidated
TIMES_CITED()
SEARCH_KEYWORD
VOLUME276
ISSUE181
START_PAGE15537
END_PAGE15546
ABSTRACTIn this study, we examined the mitogen-activated protein kinase (MAPK) cascade in micrometastatic cell lines generated from rib bone marrow (RBM) of patients undergoing resection of esophagogastric malignancies, The molecular mechanism(s) involved in esophagogastric MAPK activation have not previously been investigated. Constitutive activation of both ERK1 and -2 isoforms was evident in each of the five RBM cell lines. Elk-1, a transcription factor activated by the ERK1/2 pathway was also found to be constitutively activated. Cell lines generated from metastases of involved lymph nodes (OC2) and ascites (OC1) of patients with esophageal cancer do not display, however, hyperphosphorylation of ERK1/2, Constitutive RBM ERK1/2 activation is protein kinase C and phosphatidylinositol 3-kinase dependent. Surprisingly, constitutive ERK1/2 activation is MEK-independent. Pharmacological inhibition of MEK with two specific inhibitors, PD 98059 and U0126, were both ineffective in blocking ERK activation. Similarly, the use of a dominant negative MEK mutant was without effect. Interestingly, experiments overexpressing two different dominant negative Pak1 mutants significantly reduced RBM ERK1/2 activation, albeit not to the same extent for all cell lines. We also examined the role of three different phosphatases, PAC1, MKP-1, and -2, While RBM ERK1/2 activation was found to be PAC1- and MKP-2-independent, surprisingly, MKP-1 was down-regulated in all five RBM cell lines. In conclusion, we provide evidence for the first time for a MEK-independent constitutive ERK1/2 activation pathway in esophagogastric RBM cell lines. These findings have important implications for drug treatment strategies which currently target MEK in other forms of cancer.In this study, we examined the mitogen-activated protein kinase (MAPK) cascade in micrometastatic cell lines generated from rib bone marrow (RBM) of patients undergoing resection of esophagogastric malignancies, The molecular mechanism(s) involved in esophagogastric MAPK activation have not previously been investigated. Constitutive activation of both ERK1 and -2 isoforms was evident in each of the five RBM cell lines. Elk-1, a transcription factor activated by the ERK1/2 pathway was also found to be constitutively activated. Cell lines generated from metastases of involved lymph nodes (OC2) and ascites (OC1) of patients with esophageal cancer do not display, however, hyperphosphorylation of ERK1/2, Constitutive RBM ERK1/2 activation is protein kinase C and phosphatidylinositol 3-kinase dependent. Surprisingly, constitutive ERK1/2 activation is MEK-independent. Pharmacological inhibition of MEK with two specific inhibitors, PD 98059 and U0126, were both ineffective in blocking ERK activation. Similarly, the use of a dominant negative MEK mutant was without effect. Interestingly, experiments overexpressing two different dominant negative Pak1 mutants significantly reduced RBM ERK1/2 activation, albeit not to the same extent for all cell lines. We also examined the role of three different phosphatases, PAC1, MKP-1, and -2, While RBM ERK1/2 activation was found to be PAC1- and MKP-2-independent, surprisingly, MKP-1 was down-regulated in all five RBM cell lines. In conclusion, we provide evidence for the first time for a MEK-independent constitutive ERK1/2 activation pathway in esophagogastric RBM cell lines. These findings have important implications for drug treatment strategies which currently target MEK in other forms of cancer.
PUBLISHER_LOCATION
ISBN_ISSN0021-92580021-9258
EDITION
URL://WOS:000168528800133://WOS:000168528800133
DOI_LINK
FUNDING_BODY
GRANT_DETAILS