Bifidobacterium infantis 35624 administration induces Foxp3 T regulatory cells in human peripheral blood: potential role for myeloid and plasmacytoid dendritic cells

Typeset version

 

TY  - JOUR
  - Konieczna, P.,Groeger, D.,Ziegler, M.,Frei, R.,Ferstl, R.,Shanahan, F.,Quigley, E. M.,Kiely, B.,Akdis, C. A.,O'Mahony, L.
  - 2012
  - March
  - Gut
  - Bifidobacterium infantis 35624 administration induces Foxp3 T regulatory cells in human peripheral blood: potential role for myeloid and plasmacytoid dendritic cells
  - Validated
  - ()
  - 61
  - 33
  - 354
  - 366
  - BACKGROUND: Intestinal homoeostasis is dependent on immunological tolerance to the microbiota. OBJECTIVE: To (1) determine if a probiotic could induce Foxp3 T cells in humans; (2) to elucidate the molecular mechanisms, which are involved in the induction of Foxp3 T cells by human dendritic cells. DESIGN: Cytokine secretion and Foxp3 expression were assessed in human volunteers following Bifidobacterium infantis feeding. Monocyte-derived dendritic cells (MDDCs), myeloid dendritic cells (mDCs) and plasmacytoid dendritic cells (pDCs) were incubated in vitro with B. infantis and autologous lymphocytes. Transcription factor expression, costimulatory molecule expression, cytokine secretion, retinoic acid and tryptophan metabolism were analysed. RESULTS: Volunteers fed B. infantis displayed a selective increase in secretion of interleukin (IL)-10 and enhanced Foxp3 expression in peripheral blood. In vitro, MDDCs, mDCs and pDCs expressed indoleamine 2,3-dioxygenase and secreted IL-10, but not IL-12p70, in response to B. infantis. MDDC and mDC IL-10 secretion was Toll-like receptor (TLR)-2/6 dependent, while pDC IL-10 secretion was TLR-9 dependent. In addition, MDDCs and mDCs expressed RALDH2, which was TLR-2 and DC-SIGN dependent. B. infantis-stimulated MDDCs, mDCs and pDCs induced T cell Foxp3 expression. TLR-2, DC-SIGN and retinoic acid were required for MDDC and mDC induction of Foxp3 T cells, while pDCs required indoleamine 2,3-dioxygenase. CONCLUSIONS: B. infantis administration to humans selectively promotes immunoregulatory responses, suggesting that this microbe may have therapeutic utility in patients with inflammatory disease. Cross-talk between multiple pattern-recognition receptors and metabolic pathways determines the innate and subsequent T regulatory cell response to B. infantis. These findings link nutrition, microbiota and the induction of tolerance within the gastrointestinal mucosa.BACKGROUND: Intestinal homoeostasis is dependent on immunological tolerance to the microbiota. OBJECTIVE: To (1) determine if a probiotic could induce Foxp3 T cells in humans; (2) to elucidate the molecular mechanisms, which are involved in the induction of Foxp3 T cells by human dendritic cells. DESIGN: Cytokine secretion and Foxp3 expression were assessed in human volunteers following Bifidobacterium infantis feeding. Monocyte-derived dendritic cells (MDDCs), myeloid dendritic cells (mDCs) and plasmacytoid dendritic cells (pDCs) were incubated in vitro with B. infantis and autologous lymphocytes. Transcription factor expression, costimulatory molecule expression, cytokine secretion, retinoic acid and tryptophan metabolism were analysed. RESULTS: Volunteers fed B. infantis displayed a selective increase in secretion of interleukin (IL)-10 and enhanced Foxp3 expression in peripheral blood. In vitro, MDDCs, mDCs and pDCs expressed indoleamine 2,3-dioxygenase and secreted IL-10, but not IL-12p70, in response to B. infantis. MDDC and mDC IL-10 secretion was Toll-like receptor (TLR)-2/6 dependent, while pDC IL-10 secretion was TLR-9 dependent. In addition, MDDCs and mDCs expressed RALDH2, which was TLR-2 and DC-SIGN dependent. B. infantis-stimulated MDDCs, mDCs and pDCs induced T cell Foxp3 expression. TLR-2, DC-SIGN and retinoic acid were required for MDDC and mDC induction of Foxp3 T cells, while pDCs required indoleamine 2,3-dioxygenase. CONCLUSIONS: B. infantis administration to humans selectively promotes immunoregulatory responses, suggesting that this microbe may have therapeutic utility in patients with inflammatory disease. Cross-talk between multiple pattern-recognition receptors and metabolic pathways determines the innate and subsequent T regulatory cell response to B. infantis. These findings link nutrition, microbiota and the induction of tolerance within the gastrointestinal mucosa.
  - 0017-57490017-5749
DA  - 2012/03
ER  - 
@article{V280546587,
   = {Konieczna,  P. and Groeger,  D. and Ziegler,  M. and Frei,  R. and Ferstl,  R. and Shanahan,  F. and Quigley,  E. M. and Kiely,  B. and Akdis,  C. A. and O'Mahony,  L. },
   = {2012},
   = {March},
   = {Gut},
   = {Bifidobacterium infantis 35624 administration induces Foxp3 T regulatory cells in human peripheral blood: potential role for myeloid and plasmacytoid dendritic cells},
   = {Validated},
   = {()},
   = {61},
   = {33},
  pages = {354--366},
   = {{BACKGROUND: Intestinal homoeostasis is dependent on immunological tolerance to the microbiota. OBJECTIVE: To (1) determine if a probiotic could induce Foxp3 T cells in humans; (2) to elucidate the molecular mechanisms, which are involved in the induction of Foxp3 T cells by human dendritic cells. DESIGN: Cytokine secretion and Foxp3 expression were assessed in human volunteers following Bifidobacterium infantis feeding. Monocyte-derived dendritic cells (MDDCs), myeloid dendritic cells (mDCs) and plasmacytoid dendritic cells (pDCs) were incubated in vitro with B. infantis and autologous lymphocytes. Transcription factor expression, costimulatory molecule expression, cytokine secretion, retinoic acid and tryptophan metabolism were analysed. RESULTS: Volunteers fed B. infantis displayed a selective increase in secretion of interleukin (IL)-10 and enhanced Foxp3 expression in peripheral blood. In vitro, MDDCs, mDCs and pDCs expressed indoleamine 2,3-dioxygenase and secreted IL-10, but not IL-12p70, in response to B. infantis. MDDC and mDC IL-10 secretion was Toll-like receptor (TLR)-2/6 dependent, while pDC IL-10 secretion was TLR-9 dependent. In addition, MDDCs and mDCs expressed RALDH2, which was TLR-2 and DC-SIGN dependent. B. infantis-stimulated MDDCs, mDCs and pDCs induced T cell Foxp3 expression. TLR-2, DC-SIGN and retinoic acid were required for MDDC and mDC induction of Foxp3 T cells, while pDCs required indoleamine 2,3-dioxygenase. CONCLUSIONS: B. infantis administration to humans selectively promotes immunoregulatory responses, suggesting that this microbe may have therapeutic utility in patients with inflammatory disease. Cross-talk between multiple pattern-recognition receptors and metabolic pathways determines the innate and subsequent T regulatory cell response to B. infantis. These findings link nutrition, microbiota and the induction of tolerance within the gastrointestinal mucosa.BACKGROUND: Intestinal homoeostasis is dependent on immunological tolerance to the microbiota. OBJECTIVE: To (1) determine if a probiotic could induce Foxp3 T cells in humans; (2) to elucidate the molecular mechanisms, which are involved in the induction of Foxp3 T cells by human dendritic cells. DESIGN: Cytokine secretion and Foxp3 expression were assessed in human volunteers following Bifidobacterium infantis feeding. Monocyte-derived dendritic cells (MDDCs), myeloid dendritic cells (mDCs) and plasmacytoid dendritic cells (pDCs) were incubated in vitro with B. infantis and autologous lymphocytes. Transcription factor expression, costimulatory molecule expression, cytokine secretion, retinoic acid and tryptophan metabolism were analysed. RESULTS: Volunteers fed B. infantis displayed a selective increase in secretion of interleukin (IL)-10 and enhanced Foxp3 expression in peripheral blood. In vitro, MDDCs, mDCs and pDCs expressed indoleamine 2,3-dioxygenase and secreted IL-10, but not IL-12p70, in response to B. infantis. MDDC and mDC IL-10 secretion was Toll-like receptor (TLR)-2/6 dependent, while pDC IL-10 secretion was TLR-9 dependent. In addition, MDDCs and mDCs expressed RALDH2, which was TLR-2 and DC-SIGN dependent. B. infantis-stimulated MDDCs, mDCs and pDCs induced T cell Foxp3 expression. TLR-2, DC-SIGN and retinoic acid were required for MDDC and mDC induction of Foxp3 T cells, while pDCs required indoleamine 2,3-dioxygenase. CONCLUSIONS: B. infantis administration to humans selectively promotes immunoregulatory responses, suggesting that this microbe may have therapeutic utility in patients with inflammatory disease. Cross-talk between multiple pattern-recognition receptors and metabolic pathways determines the innate and subsequent T regulatory cell response to B. infantis. These findings link nutrition, microbiota and the induction of tolerance within the gastrointestinal mucosa.}},
  issn = {0017-57490017-5749},
  source = {IRIS}
}
AUTHORSKonieczna, P.,Groeger, D.,Ziegler, M.,Frei, R.,Ferstl, R.,Shanahan, F.,Quigley, E. M.,Kiely, B.,Akdis, C. A.,O'Mahony, L.
YEAR2012
MONTHMarch
JOURNAL_CODEGut
TITLEBifidobacterium infantis 35624 administration induces Foxp3 T regulatory cells in human peripheral blood: potential role for myeloid and plasmacytoid dendritic cells
STATUSValidated
TIMES_CITED()
SEARCH_KEYWORD
VOLUME61
ISSUE33
START_PAGE354
END_PAGE366
ABSTRACTBACKGROUND: Intestinal homoeostasis is dependent on immunological tolerance to the microbiota. OBJECTIVE: To (1) determine if a probiotic could induce Foxp3 T cells in humans; (2) to elucidate the molecular mechanisms, which are involved in the induction of Foxp3 T cells by human dendritic cells. DESIGN: Cytokine secretion and Foxp3 expression were assessed in human volunteers following Bifidobacterium infantis feeding. Monocyte-derived dendritic cells (MDDCs), myeloid dendritic cells (mDCs) and plasmacytoid dendritic cells (pDCs) were incubated in vitro with B. infantis and autologous lymphocytes. Transcription factor expression, costimulatory molecule expression, cytokine secretion, retinoic acid and tryptophan metabolism were analysed. RESULTS: Volunteers fed B. infantis displayed a selective increase in secretion of interleukin (IL)-10 and enhanced Foxp3 expression in peripheral blood. In vitro, MDDCs, mDCs and pDCs expressed indoleamine 2,3-dioxygenase and secreted IL-10, but not IL-12p70, in response to B. infantis. MDDC and mDC IL-10 secretion was Toll-like receptor (TLR)-2/6 dependent, while pDC IL-10 secretion was TLR-9 dependent. In addition, MDDCs and mDCs expressed RALDH2, which was TLR-2 and DC-SIGN dependent. B. infantis-stimulated MDDCs, mDCs and pDCs induced T cell Foxp3 expression. TLR-2, DC-SIGN and retinoic acid were required for MDDC and mDC induction of Foxp3 T cells, while pDCs required indoleamine 2,3-dioxygenase. CONCLUSIONS: B. infantis administration to humans selectively promotes immunoregulatory responses, suggesting that this microbe may have therapeutic utility in patients with inflammatory disease. Cross-talk between multiple pattern-recognition receptors and metabolic pathways determines the innate and subsequent T regulatory cell response to B. infantis. These findings link nutrition, microbiota and the induction of tolerance within the gastrointestinal mucosa.BACKGROUND: Intestinal homoeostasis is dependent on immunological tolerance to the microbiota. OBJECTIVE: To (1) determine if a probiotic could induce Foxp3 T cells in humans; (2) to elucidate the molecular mechanisms, which are involved in the induction of Foxp3 T cells by human dendritic cells. DESIGN: Cytokine secretion and Foxp3 expression were assessed in human volunteers following Bifidobacterium infantis feeding. Monocyte-derived dendritic cells (MDDCs), myeloid dendritic cells (mDCs) and plasmacytoid dendritic cells (pDCs) were incubated in vitro with B. infantis and autologous lymphocytes. Transcription factor expression, costimulatory molecule expression, cytokine secretion, retinoic acid and tryptophan metabolism were analysed. RESULTS: Volunteers fed B. infantis displayed a selective increase in secretion of interleukin (IL)-10 and enhanced Foxp3 expression in peripheral blood. In vitro, MDDCs, mDCs and pDCs expressed indoleamine 2,3-dioxygenase and secreted IL-10, but not IL-12p70, in response to B. infantis. MDDC and mDC IL-10 secretion was Toll-like receptor (TLR)-2/6 dependent, while pDC IL-10 secretion was TLR-9 dependent. In addition, MDDCs and mDCs expressed RALDH2, which was TLR-2 and DC-SIGN dependent. B. infantis-stimulated MDDCs, mDCs and pDCs induced T cell Foxp3 expression. TLR-2, DC-SIGN and retinoic acid were required for MDDC and mDC induction of Foxp3 T cells, while pDCs required indoleamine 2,3-dioxygenase. CONCLUSIONS: B. infantis administration to humans selectively promotes immunoregulatory responses, suggesting that this microbe may have therapeutic utility in patients with inflammatory disease. Cross-talk between multiple pattern-recognition receptors and metabolic pathways determines the innate and subsequent T regulatory cell response to B. infantis. These findings link nutrition, microbiota and the induction of tolerance within the gastrointestinal mucosa.
PUBLISHER_LOCATION
ISBN_ISSN0017-57490017-5749
EDITION
URL
DOI_LINK
FUNDING_BODY
GRANT_DETAILS