Genome sequence reveals that Pseudomonas fluorescens F113 possesses a large and diverse array of systems for rhizosphere function and host interaction

Typeset version

 

TY  - JOUR
  - Redondo-Nieto, M,Barret, M,Morrissey, J,Germaine, K,Martinez-Granero, F,Barahona, E,Navazo, A,Sanchez-Contreras, M,Moynihan, JA,Muriel, C,Dowling, D,O'Gara, F,Martin, M,Rivilla, R
  - 2013
  - January
  - BMC Genomics
  - Genome sequence reveals that Pseudomonas fluorescens F113 possesses a large and diverse array of systems for rhizosphere function and host interaction
  - Validated
  - ()
  - VI SECRETION SYSTEM COMPETITIVE COLONIZATION ABILITY ROOT-COLONIZATION III SECRETION STREPTOMYCES-ROCHEI MAXIMUM-LIKELIHOOD PLANT-GROWTH AZOSPIRILLUM-BRASILENSE SINORHIZOBIUM-MELILOTI EVOLUTIONARY HISTORY
  - 14
  - Background: Pseudomonas fluorescens F113 is a plant growth-promoting rhizobacterium (PGPR) isolated from the sugar-beet rhizosphere. This bacterium has been extensively studied as a model strain for genetic regulation of secondary metabolite production in P. fluorescens, as a candidate biocontrol agent against phytopathogens, and as a heterologous host for expression of genes with biotechnological application. The F113 genome sequence and annotation has been recently reported.Results: Comparative analysis of 50 genome sequences of strains belonging to the P. fluorescens group has revealed the existence of five distinct subgroups. F113 belongs to subgroup I, which is mostly composed of strains classified as P. brassicacearum. The core genome of these five strains is highly conserved and represents approximately 76% of the protein-coding genes in any given genome. Despite this strong conservation, F113 also contains a large number of unique protein-coding genes that encode traits potentially involved in the rhizocompetence of this strain. These features include protein coding genes required for denitrification, diterpenoids catabolism, motility and chemotaxis, protein secretion and production of antimicrobial compounds and insect toxins.Conclusions: The genome of P. fluorescens F113 is composed of numerous protein-coding genes, not usually found together in previously sequenced genomes, which are potentially decisive during the colonisation of the rhizosphere and/or interaction with other soil organisms. This includes genes encoding proteins involved in the production of a second flagellar apparatus, the use of abietic acid as a growth substrate, the complete denitrification pathway, the possible production of a macrolide antibiotic and the assembly of multiple protein secretion systems.
  - ARTN 54
DA  - 2013/01
ER  - 
@article{V206307798,
   = {Redondo-Nieto,  M and Barret,  M and Morrissey,  J and Germaine,  K and Martinez-Granero,  F and Barahona,  E and Navazo,  A and Sanchez-Contreras,  M and Moynihan,  JA and Muriel,  C and Dowling,  D and O'Gara,  F and Martin,  M and Rivilla,  R },
   = {2013},
   = {January},
   = {BMC Genomics},
   = {Genome sequence reveals that Pseudomonas fluorescens F113 possesses a large and diverse array of systems for rhizosphere function and host interaction},
   = {Validated},
   = {()},
   = {VI SECRETION SYSTEM COMPETITIVE COLONIZATION ABILITY ROOT-COLONIZATION III SECRETION STREPTOMYCES-ROCHEI MAXIMUM-LIKELIHOOD PLANT-GROWTH AZOSPIRILLUM-BRASILENSE SINORHIZOBIUM-MELILOTI EVOLUTIONARY HISTORY},
   = {14},
   = {{Background: Pseudomonas fluorescens F113 is a plant growth-promoting rhizobacterium (PGPR) isolated from the sugar-beet rhizosphere. This bacterium has been extensively studied as a model strain for genetic regulation of secondary metabolite production in P. fluorescens, as a candidate biocontrol agent against phytopathogens, and as a heterologous host for expression of genes with biotechnological application. The F113 genome sequence and annotation has been recently reported.Results: Comparative analysis of 50 genome sequences of strains belonging to the P. fluorescens group has revealed the existence of five distinct subgroups. F113 belongs to subgroup I, which is mostly composed of strains classified as P. brassicacearum. The core genome of these five strains is highly conserved and represents approximately 76% of the protein-coding genes in any given genome. Despite this strong conservation, F113 also contains a large number of unique protein-coding genes that encode traits potentially involved in the rhizocompetence of this strain. These features include protein coding genes required for denitrification, diterpenoids catabolism, motility and chemotaxis, protein secretion and production of antimicrobial compounds and insect toxins.Conclusions: The genome of P. fluorescens F113 is composed of numerous protein-coding genes, not usually found together in previously sequenced genomes, which are potentially decisive during the colonisation of the rhizosphere and/or interaction with other soil organisms. This includes genes encoding proteins involved in the production of a second flagellar apparatus, the use of abietic acid as a growth substrate, the complete denitrification pathway, the possible production of a macrolide antibiotic and the assembly of multiple protein secretion systems.}},
   = {ARTN 54},
  source = {IRIS}
}
AUTHORSRedondo-Nieto, M,Barret, M,Morrissey, J,Germaine, K,Martinez-Granero, F,Barahona, E,Navazo, A,Sanchez-Contreras, M,Moynihan, JA,Muriel, C,Dowling, D,O'Gara, F,Martin, M,Rivilla, R
YEAR2013
MONTHJanuary
JOURNAL_CODEBMC Genomics
TITLEGenome sequence reveals that Pseudomonas fluorescens F113 possesses a large and diverse array of systems for rhizosphere function and host interaction
STATUSValidated
TIMES_CITED()
SEARCH_KEYWORDVI SECRETION SYSTEM COMPETITIVE COLONIZATION ABILITY ROOT-COLONIZATION III SECRETION STREPTOMYCES-ROCHEI MAXIMUM-LIKELIHOOD PLANT-GROWTH AZOSPIRILLUM-BRASILENSE SINORHIZOBIUM-MELILOTI EVOLUTIONARY HISTORY
VOLUME14
ISSUE
START_PAGE
END_PAGE
ABSTRACTBackground: Pseudomonas fluorescens F113 is a plant growth-promoting rhizobacterium (PGPR) isolated from the sugar-beet rhizosphere. This bacterium has been extensively studied as a model strain for genetic regulation of secondary metabolite production in P. fluorescens, as a candidate biocontrol agent against phytopathogens, and as a heterologous host for expression of genes with biotechnological application. The F113 genome sequence and annotation has been recently reported.Results: Comparative analysis of 50 genome sequences of strains belonging to the P. fluorescens group has revealed the existence of five distinct subgroups. F113 belongs to subgroup I, which is mostly composed of strains classified as P. brassicacearum. The core genome of these five strains is highly conserved and represents approximately 76% of the protein-coding genes in any given genome. Despite this strong conservation, F113 also contains a large number of unique protein-coding genes that encode traits potentially involved in the rhizocompetence of this strain. These features include protein coding genes required for denitrification, diterpenoids catabolism, motility and chemotaxis, protein secretion and production of antimicrobial compounds and insect toxins.Conclusions: The genome of P. fluorescens F113 is composed of numerous protein-coding genes, not usually found together in previously sequenced genomes, which are potentially decisive during the colonisation of the rhizosphere and/or interaction with other soil organisms. This includes genes encoding proteins involved in the production of a second flagellar apparatus, the use of abietic acid as a growth substrate, the complete denitrification pathway, the possible production of a macrolide antibiotic and the assembly of multiple protein secretion systems.
PUBLISHER_LOCATION
ISBN_ISSN
EDITION
URL
DOI_LINKARTN 54
FUNDING_BODY
GRANT_DETAILS