Molecular-based strategies to exploit Pseudomonas biocontrol strains for environmental biotechnology applications.

Typeset version

 

TY  - JOUR
  - Mark, G., Morrissey, J.P., Higgins, P., and O'Gara, F.
  - 2006
  - May
  - Fems Microbiology Ecology
  - Molecular-based strategies to exploit Pseudomonas biocontrol strains for environmental biotechnology applications.
  - Published
  - ()
  - 56
  - 167
  - 177
  - Exploitation of beneficial plant-microbe interactions in the rhizosphere can result in the promotion of plant health and have significant implications for low input sustainable agriculture applications such as biocontrol. Bacteria such as Bacillus and Pseudomonas, and fungi such as Trichoderma, have been developed as commercial biocontrol products. Registration of microbial inocualants as biocontrol agents in either the European Union or the United States requires production of extensive dossiers covering efficacy, safety and risk assessment. Despite the fact that a number of Pseudomonas biocontrol products have been marketed there are still some limitations hampering the development of this technology for widespread use in agriculture. Although many strains show good performance in specific trials, this is often not translated into consistent, effective biocontrol in diverse field situations. Advances in 'Omics' technology and the publication of complete genome sequences of a number of plant-associative bacterial strains, has facilitated investigations into the molecular basis underpinning the establishment of beneficial plant-microbe interactions in the rhizosphere. The understanding of these molecular signalling processes and the functions they regulate is fundamental to promoting beneficial microbe-plant interactions, to overcome existing limitations and to designing improved strategies for the development of novel Pseudmonas biocontrol inoculant consortia.Exploitation of beneficial plant-microbe interactions in the rhizosphere can result in the promotion of plant health and have significant implications for low input sustainable agriculture applications such as biocontrol. Bacteria such as Bacillus and Pseudomonas, and fungi such as Trichoderma, have been developed as commercial biocontrol products. Registration of microbial inocualants as biocontrol agents in either the European Union or the United States requires production of extensive dossiers covering efficacy, safety and risk assessment. Despite the fact that a number of Pseudomonas biocontrol products have been marketed there are still some limitations hampering the development of this technology for widespread use in agriculture. Although many strains show good performance in specific trials, this is often not translated into consistent, effective biocontrol in diverse field situations. Advances in 'Omics' technology and the publication of complete genome sequences of a number of plant-associative bacterial strains, has facilitated investigations into the molecular basis underpinning the establishment of beneficial plant-microbe interactions in the rhizosphere. The understanding of these molecular signalling processes and the functions they regulate is fundamental to promoting beneficial microbe-plant interactions, to overcome existing limitations and to designing improved strategies for the development of novel Pseudmonas biocontrol inoculant consortia.
  - 0168-6496 (Print)
  - http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve;db=PubMed;dopt=Citation;list_uids=16629747http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve;db=PubMed;dopt=Citation;list_uids=16629747
DA  - 2006/05
ER  - 
@article{V60206735,
   = {Mark, G., Morrissey, J.P., Higgins, P., and O'Gara, F.},
   = {2006},
   = {May},
   = {Fems Microbiology Ecology},
   = {Molecular-based strategies to exploit Pseudomonas biocontrol strains for environmental biotechnology applications.},
   = {Published},
   = {()},
   = {56},
  pages = {167--177},
   = {{Exploitation of beneficial plant-microbe interactions in the rhizosphere can result in the promotion of plant health and have significant implications for low input sustainable agriculture applications such as biocontrol. Bacteria such as Bacillus and Pseudomonas, and fungi such as Trichoderma, have been developed as commercial biocontrol products. Registration of microbial inocualants as biocontrol agents in either the European Union or the United States requires production of extensive dossiers covering efficacy, safety and risk assessment. Despite the fact that a number of Pseudomonas biocontrol products have been marketed there are still some limitations hampering the development of this technology for widespread use in agriculture. Although many strains show good performance in specific trials, this is often not translated into consistent, effective biocontrol in diverse field situations. Advances in 'Omics' technology and the publication of complete genome sequences of a number of plant-associative bacterial strains, has facilitated investigations into the molecular basis underpinning the establishment of beneficial plant-microbe interactions in the rhizosphere. The understanding of these molecular signalling processes and the functions they regulate is fundamental to promoting beneficial microbe-plant interactions, to overcome existing limitations and to designing improved strategies for the development of novel Pseudmonas biocontrol inoculant consortia.Exploitation of beneficial plant-microbe interactions in the rhizosphere can result in the promotion of plant health and have significant implications for low input sustainable agriculture applications such as biocontrol. Bacteria such as Bacillus and Pseudomonas, and fungi such as Trichoderma, have been developed as commercial biocontrol products. Registration of microbial inocualants as biocontrol agents in either the European Union or the United States requires production of extensive dossiers covering efficacy, safety and risk assessment. Despite the fact that a number of Pseudomonas biocontrol products have been marketed there are still some limitations hampering the development of this technology for widespread use in agriculture. Although many strains show good performance in specific trials, this is often not translated into consistent, effective biocontrol in diverse field situations. Advances in 'Omics' technology and the publication of complete genome sequences of a number of plant-associative bacterial strains, has facilitated investigations into the molecular basis underpinning the establishment of beneficial plant-microbe interactions in the rhizosphere. The understanding of these molecular signalling processes and the functions they regulate is fundamental to promoting beneficial microbe-plant interactions, to overcome existing limitations and to designing improved strategies for the development of novel Pseudmonas biocontrol inoculant consortia.}},
  issn = {0168-6496 (Print)},
   = {http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve;db=PubMed;dopt=Citation;list_uids=16629747http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve;db=PubMed;dopt=Citation;list_uids=16629747},
  source = {IRIS}
}
AUTHORSMark, G., Morrissey, J.P., Higgins, P., and O'Gara, F.
YEAR2006
MONTHMay
JOURNAL_CODEFems Microbiology Ecology
TITLEMolecular-based strategies to exploit Pseudomonas biocontrol strains for environmental biotechnology applications.
STATUSPublished
TIMES_CITED()
SEARCH_KEYWORD
VOLUME56
ISSUE
START_PAGE167
END_PAGE177
ABSTRACTExploitation of beneficial plant-microbe interactions in the rhizosphere can result in the promotion of plant health and have significant implications for low input sustainable agriculture applications such as biocontrol. Bacteria such as Bacillus and Pseudomonas, and fungi such as Trichoderma, have been developed as commercial biocontrol products. Registration of microbial inocualants as biocontrol agents in either the European Union or the United States requires production of extensive dossiers covering efficacy, safety and risk assessment. Despite the fact that a number of Pseudomonas biocontrol products have been marketed there are still some limitations hampering the development of this technology for widespread use in agriculture. Although many strains show good performance in specific trials, this is often not translated into consistent, effective biocontrol in diverse field situations. Advances in 'Omics' technology and the publication of complete genome sequences of a number of plant-associative bacterial strains, has facilitated investigations into the molecular basis underpinning the establishment of beneficial plant-microbe interactions in the rhizosphere. The understanding of these molecular signalling processes and the functions they regulate is fundamental to promoting beneficial microbe-plant interactions, to overcome existing limitations and to designing improved strategies for the development of novel Pseudmonas biocontrol inoculant consortia.Exploitation of beneficial plant-microbe interactions in the rhizosphere can result in the promotion of plant health and have significant implications for low input sustainable agriculture applications such as biocontrol. Bacteria such as Bacillus and Pseudomonas, and fungi such as Trichoderma, have been developed as commercial biocontrol products. Registration of microbial inocualants as biocontrol agents in either the European Union or the United States requires production of extensive dossiers covering efficacy, safety and risk assessment. Despite the fact that a number of Pseudomonas biocontrol products have been marketed there are still some limitations hampering the development of this technology for widespread use in agriculture. Although many strains show good performance in specific trials, this is often not translated into consistent, effective biocontrol in diverse field situations. Advances in 'Omics' technology and the publication of complete genome sequences of a number of plant-associative bacterial strains, has facilitated investigations into the molecular basis underpinning the establishment of beneficial plant-microbe interactions in the rhizosphere. The understanding of these molecular signalling processes and the functions they regulate is fundamental to promoting beneficial microbe-plant interactions, to overcome existing limitations and to designing improved strategies for the development of novel Pseudmonas biocontrol inoculant consortia.
PUBLISHER_LOCATION
ISBN_ISSN0168-6496 (Print)
EDITION
URLhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve;db=PubMed;dopt=Citation;list_uids=16629747http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve;db=PubMed;dopt=Citation;list_uids=16629747
DOI_LINK
FUNDING_BODY
GRANT_DETAILS