U14 small nucleolar RNA makes multiple contacts with the pre-ribosomal RNA

Typeset version

 

TY  - JOUR
  - Morrissey, J. P.,Tollervey, D.
  - 1997
  - June
  - Chromosoma
  - U14 small nucleolar RNA makes multiple contacts with the pre-ribosomal RNA
  - Validated
  - ()
  - 105
  - 7-87-8
  - 515
  - 22515
  - The small nucleolar RNA (snoRNA) U14 has two regions of extended primary sequence complementarity to the 18S rRNA. The 3' region (domain B) shows the consensus structure for the methylation guide class of snoRNAs, whereas base-pairing between the 5' region (domain A) and the 18S rRNA sequence is required for the formation of functional ribosomes. Between domains A and B lies another essential region (domain Y). Here we report that yeast U14 can be cross-linked in vivo to the pre-rRNA; cross-linking is detected exclusively with the 35S primary transcript. Many nucleotides in U14 that lie outside of domains A and B are cross-linked to the pre-rRNA; in particular the essential domain Y region is cross-linked at several sites. U14 is, therefore, in far more extensive contact with the pre-rRNA than predicted from simple base-pairing models. Moreover, U14 can be cross-linked to other small RNA species. The functional interactions made by U14 during ribosome synthesis are likely to be very complex.The small nucleolar RNA (snoRNA) U14 has two regions of extended primary sequence complementarity to the 18S rRNA. The 3' region (domain B) shows the consensus structure for the methylation guide class of snoRNAs, whereas base-pairing between the 5' region (domain A) and the 18S rRNA sequence is required for the formation of functional ribosomes. Between domains A and B lies another essential region (domain Y). Here we report that yeast U14 can be cross-linked in vivo to the pre-rRNA; cross-linking is detected exclusively with the 35S primary transcript. Many nucleotides in U14 that lie outside of domains A and B are cross-linked to the pre-rRNA; in particular the essential domain Y region is cross-linked at several sites. U14 is, therefore, in far more extensive contact with the pre-rRNA than predicted from simple base-pairing models. Moreover, U14 can be cross-linked to other small RNA species. The functional interactions made by U14 during ribosome synthesis are likely to be very complex.
  - http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve;db=PubMed;dopt=Citation;list_uids=9211979http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve;db=PubMed;dopt=Citation;list_uids=9211979
DA  - 1997/06
ER  - 
@article{V60206765,
   = {Morrissey,  J. P. and Tollervey,  D. },
   = {1997},
   = {June},
   = {Chromosoma},
   = {U14 small nucleolar RNA makes multiple contacts with the pre-ribosomal RNA},
   = {Validated},
   = {()},
   = {105},
   = {7-87-8},
  pages = {515--22515},
   = {{The small nucleolar RNA (snoRNA) U14 has two regions of extended primary sequence complementarity to the 18S rRNA. The 3' region (domain B) shows the consensus structure for the methylation guide class of snoRNAs, whereas base-pairing between the 5' region (domain A) and the 18S rRNA sequence is required for the formation of functional ribosomes. Between domains A and B lies another essential region (domain Y). Here we report that yeast U14 can be cross-linked in vivo to the pre-rRNA; cross-linking is detected exclusively with the 35S primary transcript. Many nucleotides in U14 that lie outside of domains A and B are cross-linked to the pre-rRNA; in particular the essential domain Y region is cross-linked at several sites. U14 is, therefore, in far more extensive contact with the pre-rRNA than predicted from simple base-pairing models. Moreover, U14 can be cross-linked to other small RNA species. The functional interactions made by U14 during ribosome synthesis are likely to be very complex.The small nucleolar RNA (snoRNA) U14 has two regions of extended primary sequence complementarity to the 18S rRNA. The 3' region (domain B) shows the consensus structure for the methylation guide class of snoRNAs, whereas base-pairing between the 5' region (domain A) and the 18S rRNA sequence is required for the formation of functional ribosomes. Between domains A and B lies another essential region (domain Y). Here we report that yeast U14 can be cross-linked in vivo to the pre-rRNA; cross-linking is detected exclusively with the 35S primary transcript. Many nucleotides in U14 that lie outside of domains A and B are cross-linked to the pre-rRNA; in particular the essential domain Y region is cross-linked at several sites. U14 is, therefore, in far more extensive contact with the pre-rRNA than predicted from simple base-pairing models. Moreover, U14 can be cross-linked to other small RNA species. The functional interactions made by U14 during ribosome synthesis are likely to be very complex.}},
   = {http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve;db=PubMed;dopt=Citation;list_uids=9211979http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve;db=PubMed;dopt=Citation;list_uids=9211979},
  source = {IRIS}
}
AUTHORSMorrissey, J. P.,Tollervey, D.
YEAR1997
MONTHJune
JOURNAL_CODEChromosoma
TITLEU14 small nucleolar RNA makes multiple contacts with the pre-ribosomal RNA
STATUSValidated
TIMES_CITED()
SEARCH_KEYWORD
VOLUME105
ISSUE7-87-8
START_PAGE515
END_PAGE22515
ABSTRACTThe small nucleolar RNA (snoRNA) U14 has two regions of extended primary sequence complementarity to the 18S rRNA. The 3' region (domain B) shows the consensus structure for the methylation guide class of snoRNAs, whereas base-pairing between the 5' region (domain A) and the 18S rRNA sequence is required for the formation of functional ribosomes. Between domains A and B lies another essential region (domain Y). Here we report that yeast U14 can be cross-linked in vivo to the pre-rRNA; cross-linking is detected exclusively with the 35S primary transcript. Many nucleotides in U14 that lie outside of domains A and B are cross-linked to the pre-rRNA; in particular the essential domain Y region is cross-linked at several sites. U14 is, therefore, in far more extensive contact with the pre-rRNA than predicted from simple base-pairing models. Moreover, U14 can be cross-linked to other small RNA species. The functional interactions made by U14 during ribosome synthesis are likely to be very complex.The small nucleolar RNA (snoRNA) U14 has two regions of extended primary sequence complementarity to the 18S rRNA. The 3' region (domain B) shows the consensus structure for the methylation guide class of snoRNAs, whereas base-pairing between the 5' region (domain A) and the 18S rRNA sequence is required for the formation of functional ribosomes. Between domains A and B lies another essential region (domain Y). Here we report that yeast U14 can be cross-linked in vivo to the pre-rRNA; cross-linking is detected exclusively with the 35S primary transcript. Many nucleotides in U14 that lie outside of domains A and B are cross-linked to the pre-rRNA; in particular the essential domain Y region is cross-linked at several sites. U14 is, therefore, in far more extensive contact with the pre-rRNA than predicted from simple base-pairing models. Moreover, U14 can be cross-linked to other small RNA species. The functional interactions made by U14 during ribosome synthesis are likely to be very complex.
PUBLISHER_LOCATION
ISBN_ISSN
EDITION
URLhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve;db=PubMed;dopt=Citation;list_uids=9211979http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve;db=PubMed;dopt=Citation;list_uids=9211979
DOI_LINK
FUNDING_BODY
GRANT_DETAILS