Design of multiple-metal stacked inductors incorporating an extended physical model

Typeset version

 

TY  - 
  - Other
  - Murphy, OH,McCarthy, KG,Delabie, CJP,Murphy, AC,Murphy, PJ
  - 2005
  - May
  - Design of multiple-metal stacked inductors incorporating an extended physical model
  - Validated
  - 1
  - ()
  - integrated stacked inductor model patterned ground shield (PGS) Q improvement Q prediction SPIRAL INDUCTORS RF ICS SILICON TECHNOLOGY
  - Modern analog circuits are heavily dependent on inductor performance, where the poor inductor quality factor (Q) of silicon processes leads to degradation in circuit efficacy, especially at RF and microwave frequencies. Several techniques have been proposed to enhance the Q of integrated on-chip inductors, but the most effective method of Q improvement is to, lower the series resistance by increasing the inductor metal thickness. This paper presents the most cost-effective method of achieving a thick metal by using a standard 0.18-mu m multilayer BiCMOS process. An expanded physically based model for multiple-metal stacked inductors is presented, which expands on previous research to show the effects and limitations of stacking two, three, and four metal layers in a five-metal-layer process. The excellent accuracy of this geometrical model is illustrated with respect to a range of inductor designs showing that an improvement in Q of more than 50% may be achieved. Due to the increased parasitics in multilayer structures, the Q improvement is very frequency dependent, which is clearly predicted with the expanded model. The predictive capability of the model is further used to provide detailed insight into the effectiveness of a patterned ground shield for different substrate characteristics. This predictive ability will contribute greatly to first time right inductor designs and eliminate the expensive and time-consuming fabrication iterations required to fine tune other inductor models.
  - 2063
  - 2072
  - DOI 10.1109/TMTT.2005.848813
DA  - 2005/05
ER  - 
@misc{V160960133,
   = {Other},
   = {Murphy,  OH and McCarthy,  KG and Delabie,  CJP and Murphy,  AC and Murphy,  PJ },
   = {2005},
   = {May},
   = {Design of multiple-metal stacked inductors incorporating an extended physical model},
   = {Validated},
   = {1},
   = {()},
   = {integrated stacked inductor model patterned ground shield (PGS) Q improvement Q prediction SPIRAL INDUCTORS RF ICS SILICON TECHNOLOGY},
   = {{Modern analog circuits are heavily dependent on inductor performance, where the poor inductor quality factor (Q) of silicon processes leads to degradation in circuit efficacy, especially at RF and microwave frequencies. Several techniques have been proposed to enhance the Q of integrated on-chip inductors, but the most effective method of Q improvement is to, lower the series resistance by increasing the inductor metal thickness. This paper presents the most cost-effective method of achieving a thick metal by using a standard 0.18-mu m multilayer BiCMOS process. An expanded physically based model for multiple-metal stacked inductors is presented, which expands on previous research to show the effects and limitations of stacking two, three, and four metal layers in a five-metal-layer process. The excellent accuracy of this geometrical model is illustrated with respect to a range of inductor designs showing that an improvement in Q of more than 50% may be achieved. Due to the increased parasitics in multilayer structures, the Q improvement is very frequency dependent, which is clearly predicted with the expanded model. The predictive capability of the model is further used to provide detailed insight into the effectiveness of a patterned ground shield for different substrate characteristics. This predictive ability will contribute greatly to first time right inductor designs and eliminate the expensive and time-consuming fabrication iterations required to fine tune other inductor models.}},
  pages = {2063--2072},
   = {DOI 10.1109/TMTT.2005.848813},
  source = {IRIS}
}
OTHER_PUB_TYPEOther
AUTHORSMurphy, OH,McCarthy, KG,Delabie, CJP,Murphy, AC,Murphy, PJ
YEAR2005
MONTHMay
TITLEDesign of multiple-metal stacked inductors incorporating an extended physical model
RESEARCHER_ROLE
STATUSValidated
PEER_REVIEW1
TIMES_CITED()
SEARCH_KEYWORDintegrated stacked inductor model patterned ground shield (PGS) Q improvement Q prediction SPIRAL INDUCTORS RF ICS SILICON TECHNOLOGY
REFERENCE
ABSTRACTModern analog circuits are heavily dependent on inductor performance, where the poor inductor quality factor (Q) of silicon processes leads to degradation in circuit efficacy, especially at RF and microwave frequencies. Several techniques have been proposed to enhance the Q of integrated on-chip inductors, but the most effective method of Q improvement is to, lower the series resistance by increasing the inductor metal thickness. This paper presents the most cost-effective method of achieving a thick metal by using a standard 0.18-mu m multilayer BiCMOS process. An expanded physically based model for multiple-metal stacked inductors is presented, which expands on previous research to show the effects and limitations of stacking two, three, and four metal layers in a five-metal-layer process. The excellent accuracy of this geometrical model is illustrated with respect to a range of inductor designs showing that an improvement in Q of more than 50% may be achieved. Due to the increased parasitics in multilayer structures, the Q improvement is very frequency dependent, which is clearly predicted with the expanded model. The predictive capability of the model is further used to provide detailed insight into the effectiveness of a patterned ground shield for different substrate characteristics. This predictive ability will contribute greatly to first time right inductor designs and eliminate the expensive and time-consuming fabrication iterations required to fine tune other inductor models.
PUBLISHER_LOCATION
PUBLISHER
EDITORS
ISBN_ISSN
EDITION
URL
START_PAGE2063
END_PAGE2072
DOI_LINKDOI 10.1109/TMTT.2005.848813
FUNDING_BODY
GRANT_DETAILS